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Motivation
Personal Inspiration

I was always fascinated by cryptography. When I read, that there is a new 
method for a cryptographic key exchange, in which the key is not transmitted 
explicitly anymore I thought:

I really want to understand this, it sounds like magic!!!

Even more was I delighted when I found out, that the underlying math is based 
on the subject in which I researched at the Leibniz University Hanover, discrete 
algebraic geometry.
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Motivation
Basic Necessity

The security of conventional cryptographic procedures is based on the 
conjecture, that it is not possible to compute prime factorization of big integers 
within reasonable time.

Peter Wiliston Shor (* 14. August 1959 in New York), an american mathematician 
and computer scientist, developed an algorithm for quantum-computers which 
can solve this problem.

This algorithm will be able to compute prime factorization of big integers within 
a time short enough, such that conventional methods like RSA, Diffie-Hellmann 
and ECC will not hold anymore.
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Simple Example:                                     31313 = 173*181

From about 100 digits it becomes difficult. A 1024-bit 
integer has 309 digits in decimal representation, a 4096-
bit number has even 1234.



Motivation
Basic Necessity

           Binary Data (bits):                                      Quantum States (qubits): 

                   0 or 1  

     

5

2001  Shor's algorithm was testet on a simple quantum 
computer with 7 qubits to  factorize the integer 15. 



Secret Keys

The secrecy of the keys to decrypt encrypted data is the security basis of any 
cryptographic procedure.

Different key-management for

 Symmetric procedures
 Asymmetric procedures
 Hybrid procedures
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Secret Keys
Symmetric Procedures

Symmetric procedures use the same key for encryption and decryption of data.

→ Secret key exchange is necessary! 
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Alice Bob
Secret Key = Secret Key



Secret Keys
Symmetric Procedures

Advantages:
    - Efficient algorithms
    - Simple key management

Disadvantages:
    - Key exchange endangers encryption
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Secret Keys
Asymmetric Procedures

Asymmetric procedures use different keys for encryption and decryption of data. 
The data is encrypted with the public key and can only be decrypted with the 
private key. 

→ No secret key exchange necessary!
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Alice Bob
Secret Key A ≠ Secret Key B

Public Key A = Public Key A

Public Key B = Public Key B

So called one way functions allow mechanisms to 
mathematically hide the private key in the public key. 
They are easily computed in one direction, but hard to be 
inverted.



Secret Keys
Asymmetric Procedures

Advantages:
    - High level security
    - Key exchange does not endanger encryption!
      (There are even public key server)
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Secret Keys
Asymmetric Procedures

Advantages:
    - High level security
    - Key exchange does not endanger encryption!
      (There are even public key server)

Disadvantages: 
    - 2 different keys per communication partner 
    - About 10 000 times slower than symmetric procedures
    - Long keys
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Secret Keys
Hybrid Procedures

Combination of symmetric and asymmetric procedure. 

Symmetric:
Encryption of data with randomly generated Session-Key. 

Asymmetric:
Session-Key is asymmetrically encrypted for transmission. 

→  Asymmetrically encrypted key exchange! 
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Secret Keys
Hybrid Procedures

→ Asymmetrically encrypted key exchange! 
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Alice Bob
Session Key = Session Key 

Secret Key A ≠ Secret Key B

Public Key A = Public Key A

Public Key B = Public Key B



Secret Keys
Hybrid Procedures

Advantages:
    - High level security 
    - Efficient algorithms for the big part of data
    - Key exchange does not endanger encryption!

Disadvamtages: 
    - Complex key management
    - Long keys
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OpenSSL is a library with various cipher-suites for hybrid 
encryption. 
The implemented standard is called TLS (Transport Layer 
Security) since 1999.



Key Exchange
Pre-quantum

Conventional procedures for key exchange:

 Diffie-Hellmann      (1976)
 RSA                        (1977)
 Elliptic-Curve          (1985)

 
Their security relies on the assumption, that the secret keys cannot be 
computed within reasonable time from public data. 

Mathematically spoken, the security relies on the conjecture that prime 
factorization is hard to solve for big integers.
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Key Exchange
Pre-quantum

Mathematical fundamentals:
      

 Diffie-Hellmann: 
      Discrete exponentiation

 RSA:
Product of large primes (key exchange)
Discrete exponentiation (crypto)

 Elliptic-Curve: 
      Multiplication of points on elliptic curves
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a=r s

n=p1⋅p2

a=r s

a=r⋅P

Elliptic curves were introduced, because computations on 
them are much slower than on the ring of integers. Therefore 
shorter keys lead to the same level of security as longer keys 
with DH or RSA. 



Key Exchange
Pre-quantum

Inverse functions:
      

 Discrete logarithm
 Integer factorization 
 Division of points on elliptic

Do not run within acceptable time on pre-quantum computers, even with the 
best known algorithms. (Not feasible in polynomial time complexity).

BUT:
With Shor‘s integer factorization algorithm quantum computers will be able to 
compute this invers functions within reasonable time.
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Key Exchange
Post-quantum

New mathematical fundamentals: 
Lattice-based algorithms 

What is a lattice?
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Key Exchange
Post-quantum
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Examples for 2-dimensional lattices

v1=(1,0) , v2=(0,1) v1=(1,0) , v2=(
1
2
,
1
2
)



Key Exchange
Post-quantum

Rooms of potential solutions for polynomial equations over the integers can be 
viewed as lattices.

Relation between integers and data transformation:
Each character or string can be interpreted as integer. * 

Example for ascii encoded string:
Hallo = 48616c6c6f (hexadezimal) = 310‘872‘140‘911

 * Many on rationals, reals or complex numbers easily invertible functions 
become one way functions on the integers.
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Key Exchange
Pre- vs. post-quantum

Pre-quantum:

 
Post-quantum: 
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→ Room of possible solutions: integers or points on EC  (1-dimensional)

→ Room of possible solutions: 2-dimensional lattice

a=r s

n=p1⋅p2

a=r⋅P

a (x)=an x
n+an−1 x

n−1+…+a1⋅x+a0

a i∈Z , i∈{0 ,…, n }

The mightiness of the room of possible solutions stands 
for the possibilities an attacker has to try, if he cannot 
attack the algorithm or the involved systems. This is 
called Brute Force Attack.



Key Exchange
Pre- vs. Post-quantum

Pre-quantum:
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Key Exchange
Gitter

Conjecture as mathematical term:    

1.Stronger than a simple assumption
2.Everything points to fact that it holds
3.But there is no proof of it 

Hardness of worst-case lattice-problems is a conjecture

→ Fundamental of security for many post-quantum problems
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New Hope

Ne explicit key exchange anymore.

New principle: Key Encapsulation Mechanism

→ Chris Peikerts (MIT) KEM with more efficient parameters
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New Hope
Peikerts KEM
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Simple?                                                                                                     
… compared to the methods, from which KEM and New Hope are developed

„ A simple, lowbandwidth reconciliation technique that allows two parties who 
‘approximately agree’ on a secret value to reach exact agreement”

Excerpt of references from the New Hope paper → 

Mathematical background: Ring Learning with Errors



New Hope
Peikerts KEM

„ A simple, lowbandwidth reconciliation technique that allows two parties who 
‘approximately agree’ on a secret value to reach exact agreement”

Ring Learning with Errors
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New Hope
Peikerts KEM in Key Exchange
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 Preconditions: polynomial of degree 1024 with coefficients from {0, … ,  12288}

Alice Bob Alice
 pa(x) = a(x) ·  sa(x) + ea(x)  pb(x)= a(x) ·  sb(x) + eb(x)

Sends  pa(x) and a(x) to Bob v(x) = pa(x) ·  sb(x) + eb(x)

KEM
→     - Session Key k
        - Reconciliation string c

Sends  pb(x) and c to Alice w(x) = pb(x) ·  sa(x) + ea(x)
Reconciliation string c
KEM
→     - Session Key k



New Hope
KEM vs. Diffie-Hellmann
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Alice Bob Alice

pa(x) = a(x) ·  sa(x) + ea(x) pb(x) = a(x) ·  sb(x) + eb(x)

Sends pa(x) and a(x) to Bob v(x) = pa(x) ·  sb(x) + eb(x)
KEM
→     - Session Key k
        - Reconciliation string c

Sends pb(x) and c  to Alice w(x) = pb(x) ·  sa(x) + ea(x)
Reconciliation string c
→     - Session Key k

Alice Bob Alice

a, g, p
A = ga mod p

b
B = gb mod p

Sends A, g, p to Bob K = Ab mod p = gab mod p
Sends B to Alice K = Ba mod p = gba mod p



New Hope
Possibilities that have to be tried in a brute force attack
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•  

p1, p2RSA :≤3,13⋅101232

s (x )New Hope :102412289
=3,76⋅1036993



New Hope
Man in the Middle

Man in the Middle is possible if

 KEM not authentificated                  
(  in current implementation)

 Polynom a(x) known
(Optional, but in New Hope not!)

 Computation parameters known (1024, 12289) 
( public, actually this parameters make the KEM usable)

BUT: Google embeds New Hope in an ECC-procedure
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New Hope
Man in the Middle
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MIMAlice Bob

Fake 
Bob

FakeA
lice

Session Key 
A

Session Key 
A

Session Key 
B

Session Key 
B



Googles Test

New Hope was testet on a few connections between chrome and the google 
servers 2016. 
 
A test phase of about 2 years should challenge the crypto community to attack 
the New Hope algorithm. 

To protect the users, New Hope was embedded in a ECC-procedure, the 
algorithm is called CECPQ1.

The test phase was interrupted after a few months. 
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Googles Test
End of the test phase

Two scientists published a paper with an algorithmic solution for the 'closest 
vector problem in lattices' on 21.11.2016. It was withdrawn 24.11.2016 due to 
an error.

On 28.11.2016 Adam Langley announced the early ending of the New Hope test 
with the following reasoning:

1) The published and withdrawn paper was considered an achieved goal.
2) On very slow connections, the New Hope key exchange could have a to strong impact.
3) They assume that there only exist very simple quantum computers.
4) The integration of New Hope in TLS 1.3 could be too complex.

(TLS 1.3 consists of one less round trip than TLS 1.2) 
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Appendix
Random Values

The choice of the polynomials                 in                                   succeeds from 
a so called central binomial distribution.
        is generated for each session with a SHAKE-128 from a 256-bit seed.
The security diminution compared to from a noise generator * produced values 
is as small, that it can be negelcted. 

RNG** can be replaced by a PRNG***!
 
*    Physical source for random values
**  Random Number Generator
*** Pseudo Random Number Generator
 
(Each software-based generator only produces pseudo-random values.)
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s (x ) , e( x) p(x )=a(x )⋅s (x)+e (x)

a (x)



Appendix
Error Probability

The probability of Alice computing a different session-Key than Bob berechnet is 
smaller than

That means that in less than a trillion connections, one side would receive non-
sense data. If that happens, a new session is initiated.
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2−60
=8,67⋅10−19



Appendix
Message Lengths
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Sender Nachricht
Alice 1824 Bytes

Bob 2048 Bytes

A number from the set {0,…,12289}  can be represented by two bytes (FFFF = 
65535).
A polynomial of degree 1024 could be represented by  2 ∙1024 = 2048  Bytes.
This length can be reduced by a number theoretic transformation.



Appendix
Numbers New Hope
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Possibilities for                  in                                   :               
New Hopes parameters for computations:

• 1024 is the dimension of the ring in which the computations happen
(upper bound for degree of a polynomial)

● 12289 is the modulus 
      (coefficients of the polynomial are from the set {0,..., 12288})

In modular Computations a number/polynomial can be the product of larger 
numbers/polynomials. 

Example: 

102412289
=3,76⋅1036993p(x )=a(x )⋅s (x)+e (x)

5⋅6=30≡2mod 7

s (x ) , e( x)



Appendix
Numbers RSA
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Possibilities for           in a 4096-bit public RSA key               :

If we find     ,      is found too.     and    are no primes.  If          then   is even, 
what we would see immediately. All other even numbers and all numbers ending 
with    are no primes, such that there remain
 

numbers to test. 

Bytes Hexadezimal Formel dezimal
1 FF

2 FFFF

512 512 X FF

28
−1

22⋅8
−1

2512⋅8
−1

p1, p2 n=p1⋅p2

p1 p2 0 p1=2

(2512⋅8
−2 )/2−(2512⋅8

/5 )=(2512⋅8−1
−1 )−(2512⋅8

/5 )=3,13⋅101232

1p1 n

5



Appendix
Sophisticated RSA-Hacks

The primes            can be testet prime number lists.
 
The currently largest known prime is                      .

If the prime factors are close to      , they can be found with probalistic methods 
within seconds.
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p1, p2

274 ' 207 '2810
−1

√n
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