The post-quantum Algorithm New Hope

A NEW PRINCIPLE FOR CRYPTOGAPHIC KEY EXCHANGE
Dipl. Math. Xenia Bogomolec, 15.02.2017

Content

- Motivation
- Personal Inspiration
- Necessity
- Secret Keys
- Symmetric Procedures
- Asymmetrc Procedures
- Hybrid Procedures
- Key Exchange
- Diffie-Hellmann
- RSA
- ECC
- New Hope
- Peikerts KEM
- KEM vs. Key Exchange
- Brute Force Possibilities
- Man in the Middle
- Googles Test
- Appendix
- Random Values
- Error Probability
- Message Lengths
- Numbers New Hope
- Numbers RSA
- Sophisticated RSA-Hacks

Motivation
 Personal Inspiration

I was always fascinated by cryptography. When I read, that there is a new method for a cryptographic key exchange, in which the key is not transmitted explicitly anymore I thought:

> I really want to understand this, it sounds like magic!!!

Even more was I delighted when I found out, that the underlying math is based on the subject in which I researched at the Leibniz University Hanover, discrete algebraic geometry.

The security of conventional cryptographic procedures is based on the conjecture, that it is not possible to compute prime factorization of big integers within reasonable time.

Peter Wiliston Shor (* 14. August 1959 in New York), an american mathematician and computer scientist, developed an algorithm for quantum-computers which can solve this problem.

This algorithm will be able to compute prime factorization of big integers within a time short enough, such that conventional methods like RSA, Diffie-Hellmann and ECC will not hold anymore.

Motivation

Basic Necessity

Binary Data (bits):
0 or 1

Quantum States (qubits):

Secret Keys

The secrecy of the keys to decrypt encrypted data is the security basis of any cryptographic procedure.

Different key-management for

- Symmetric procedures
- Asymmetric procedures
- Hybrid procedures

Secret Keys
 Symmetric Procedures

Symmetric procedures use the same key for encryption and decryption of data.

Alice		Bob
Secret Key	$=$	Secret Key

\rightarrow Secret key exchange is necessary!

Secret Keys
 Symmetric Procedures

Advantages:

- Efficient algorithms
- Simple key management

Disadvantages:

- Key exchange endangers encryption

Secret Keys
 Asymmetric Procedures

So called one way functions allow mechanisms to mathematically hide the private key in the public key.

Asymmetric procedures use different keys for encryption and decryption of data. The data is encrypted with the public key and can only be decrypted with the private key.

Alice	\neq	Bob
Secret Key A	$=$	Secret Key B
Public Key A	$=$	Public Key A
Public Key B		Public Key B

\rightarrow No secret key exchange necessary!

Secret Keys

Asymmetric Procedures

Advantages:

- High level security
- Key exchange does not endanger encryption! (There are even public key server)

$\leftarrow \rightarrow$ (1) $@$ htps://pgp.mit.edu

MIT PGP Public Key Server

Help: Extracting kevs / Submitting kevs / Email interface/ About this server / FAQ Related Info: Information about PGP

Extract a key
Search String: Xenia Bogomolec Do the search!
Index: © Verbose Index: ○
\square Show PGP fingerprints for keys
\square Only return exact matches
Submit a key
Enter ASCII-armored PGP key here:

Secret Keys

Asymmetric Procedures
Advantages:

- High level security
- Key exchange does not endanger encryption!
(There are even public key server)
Disadvantages:
- 2 different keys per communication partner
- About 10000 times slower than symmetric procedures
- Long keys

Secret Keys
 Hybrid Procedures

Combination of symmetric and asymmetric procedure.
Symmetric:
Encryption of data with randomly generated Session-Key.
Asymmetric:
Session-Key is asymmetrically encrypted for transmission.
\rightarrow Asymmetrically encrypted key exchange!

Secret Keys

Hybrid Procedures

Alice		Bob
Session Key	\neq	Session Key
Secret Key A	$=$	Secret Key B
Public Key A	$=$	Public Key A
Public Key B		Public Key B

\rightarrow Asymmetrically encrypted key exchange!

Secret Keys
 Hybrid Procedures

Advantages:

- High level security
- Efficient algorithms for the big part of data
- Key exchange does not endanger encryption!

Disadvamtages:

- Complex key management
- Long keys

Key Exchange
 Pre-quantum

Conventional procedures for key exchange:

- Diffie-Hellmann (1976)
- RSA (1977)
- Elliptic-Curve (1985)

Their security relies on the assumption, that the secret keys cannot be computed within reasonable time from public data.

Mathematically spoken, the security relies on the conjecture that prime factorization is hard to solve for big integers.

Key Exchange
 Pre-quantum

Mathematical fundamentals:

- Diffie-Hellmann:

Discrete exponentiation

$$
a=r^{s}
$$

- RSA:

Product of large primes (key exchange)
Discrete exponentiation (crypto)

$$
n=p_{1} \cdot p_{2}
$$

$$
a=r^{s}
$$

- Elliptic-Curve:

Multiplication of points on elliptic curves

$$
a=r \cdot P
$$

Key Exchange
 Pre-quantum

Inverse functions:

- Discrete logarithm
- Integer factorization
- Division of points on elliptic

Do not run within acceptable time on pre-quantum computers, even with the best known algorithms. (Not feasible in polynomial time complexity).

BUT:
With Shor‘s integer factorization algorithm quantum computers will be able to compute this invers functions within reasonable time.

Key Exchange

Post-quantum

New mathematical fundamentals:
Lattice-based algorithms

What is a lattice?

$$
\Lambda=\left\{\sum_{i=1}^{n} a_{i} v_{i} \mid a_{i} \in \mathbb{Z}\right\}
$$

Key Exchange

Post-quantum

$$
v_{1}=(1,0), v_{2}=(0,1) \quad v_{1}=(1,0), v_{2}=\left(\frac{1}{2}, \frac{1}{2}\right)
$$

Key Exchange
 Post-quantum

Rooms of potential solutions for polynomial equations over the integers can be viewed as lattices.

Relation between integers and data transformation:
Each character or string can be interpreted as integer. *
Example for ascii encoded string:
Hallo $=48616 c 6 c 6 f($ hexadezimal $)=310 ‘ 872 ‘ 140 ` 911$

* Many on rationals, reals or complex numbers easily invertible functions become one way functions on the integers.

Key Exchange

The mightiness of the room of possible solutions stands for the possibilities an attacker has to try, if he cannot attack the algorithm or the involved systems. This is called Brute Force Attack.

Pre- vs. post-quantum

Pre-quantum:

$$
a=r^{s}
$$

$n=p_{1} \cdot p_{2} \quad \rightarrow$ Room of possible solutions: integers or points on EC (1-dimensional)
$a=r \cdot P$

Post-quantum:

$$
\begin{aligned}
& a(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} \cdot x+a_{0} \\
& a_{i} \in Z, \quad i \in\{0, \ldots, n\}
\end{aligned}
$$

\rightarrow Room of possible solutions: 2-dimensional lattice

Key Exchange

Pre- vs. Post-quantum

Pre-quantum:

Post-quantum:

Key Exchange
 Gitter

Conjecture as mathematical term:
1.Stronger than a simple assumption
2.Everything points to fact that it holds
3. But there is no proof of it

Hardness of worst-case lattice-problems is a conjecture
\rightarrow Fundamental of security for many post-quantum problems

New Hope

Ne explicit key exchange anymore.
New principle: Key Encapsulation Mechanism
\rightarrow Chris Peikerts (MIT) KEM with more efficient parameters

New Hope
 Peikerts KEM

, A simple, lowbandwidth reconciliation technique that allows two parties who 'approximately agree' on a secret value to reach exact agreement"

Simple?
... compared to the methods, from which KEM and New Hope are developed

Mathematical background: Ring Learning with Errors

Excerpt of references from the New Hope paper \rightarrow

New Hope
 Peikerts KEM

"A simple, lowbandwidth reconciliation technique that allows two parties who 'approximately agree' on a secret value to reach exact agreement"

Ring Learning with Errors

$$
\begin{gathered}
14 s_{1}+15 s_{2}+5 s_{3}+2 s_{4} \approx 8 \bmod 17 \\
13 s_{1}+14 s_{2}+14 s_{3}+6 s_{4} \approx 16 \bmod 17 \\
6 s_{1}+10 s_{2}+13 s_{3}+1 s_{4} \approx 3 \bmod 17 \\
\vdots \\
6 s_{1}+7 s_{2}+16 s_{3}+2 s_{4} \approx 3 \bmod 17
\end{gathered}
$$

New Hope
 Peikerts KEM in Key Exchange

Preconditions: polynomial of degree 1024 with coefficients from \{0, ... , 12288\}

Alice	Bob	Alice
$p_{a}(x)=a(x) \cdot s_{a}(x)+e_{a}(x)$	$p b(x)=a(x) \cdot s b(x)+e b(x)$	
Sends $p_{a}(x)$ and $\alpha(x)$ to Bob	$\begin{aligned} & v(x)=p_{a}(x) \cdot \operatorname{sb}(x)+e_{b}(x) \\ & K E M \\ & \rightarrow \quad \text { - Session Key } k \\ & \quad \text { - Reconciliation string } c \end{aligned}$	
	Sends $p_{b}(x)$ and c to Alice	$w(x)=p_{b}(x) \cdot s_{a}(x)+e_{a}(x)$ Reconciliation string c KEM $\rightarrow \quad$ - Session Key k

New Hope

KEM vs. Diffie-Hellmann

Alice	Bob	Alice
$p_{a}(x)=a(x) \cdot S_{a}(x)+e_{a}(x)$	$p_{b}(x)=a(x) \cdot s_{b}(x)+e_{b}(x)$	
Sends $p_{a}(x)$ and $a(x)$ to Bob	$v(x)=p_{a}(x) \cdot s_{b}(x)+e_{b}(x)$ $K E M$ $\rightarrow \quad-$ Session Key k Sends $p_{b}(x)$ and c to Alice	$w(x)=p_{b}(x) \cdot s_{a}(x)+e_{a}(x)$ Reconciliation string c \rightarrow - Session Key k
Alice	Bob	Alice

25152056936538307899818006367655882623136901635560566162837779355464588244123013343088670219977920298952910134467117
 83005639171648638179004240556327126313974467848929311426749
221759475567988888485255549830696846885827186392884604518

8504192185306789436821075420509320385033391342783713756379 655159920339579647456510414831396025457697719038230890191
$p_{1}, p_{2} R S A: \leq 3,13 \cdot 10$
157865462188149290095596810645014630700291224066122516374714 94357805057762823519001123237073161364488811339318282356824
715842684768120999293442761787251066286493022947942142439735

 106082574110711474672

New Hope
 Man in the Middle

Man in the Middle is possible if

- KEM not authentificated
(\checkmark in current implementation)
- Polynom $a(x)$ known (Optional, but in New Hope not!)
- Computation parameters known (1024, 12289) (\checkmark public, actually this parameters make the KEM usable)

BUT: Google embeds New Hope in an ECC-procedure

New Hope

Man in the Middle

Googles Test

New Hope was testet on a few connections between chrome and the google servers 2016.

A test phase of about 2 years should challenge the crypto community to attack the New Hope algorithm.

To protect the users, New Hope was embedded in a ECC-procedure, the algorithm is called CECPQ1.

The test phase was interrupted after a few months.

Googles Test
 End of the test phase

Two scientists published a paper with an algorithmic solution for the 'closest vector problem in lattices' on 21.11.2016. It was withdrawn 24.11.2016 due to an error.

On 28.11.2016 Adam Langley announced the early ending of the New Hope test with the following reasoning:

1) The published and withdrawn paper was considered an achieved goal.
2) On very slow connections, the New Hope key exchange could have a to strong impact.
3) They assume that there only exist very simple quantum computers.
4) The integration of New Hope in TLS 1.3 could be too complex.
(TLS 1.3 consists of one less round trip than TLS 1.2)

Appendix
 Random Values

The choice of the polynomials $s(x), e(x)$ in $p(x)=a(x) \cdot s(x)+e(x)$ succeeds from a so called central binomial distribution.
$a(x)$ is generated for each session with a SHAKE-128 from a 256-bit seed.
The security diminution compared to from a noise generator * produced values is as small, that it can be negelcted.
RNG** can be replaced by a PRNG***!

* Physical source for random values
** Random Number Generator
*** Pseudo Random Number Generator
(Each software-based generator only produces pseudo-random values.)

Appendix Error Probability

The probability of Alice computing a different session-Key than Bob berechnet is smaller than

$$
2^{-60}=8,67 \cdot 10^{-19}
$$

That means that in less than a trillion connections, one side would receive nonsense data. If that happens, a new session is initiated.

Appendix
 Message Lengths

Sender	Nachricht
Alice	1824 Bytes
Bob	2048 Bytes

A number from the set $\{0, \ldots, 12289\}$ can be represented by two bytes (FFFF $=$ 65535).

A polynomial of degree 1024 could be represented by $2 \cdot 1024=2048$ Bytes. This length can be reduced by a number theoretic transformation.

Appendix

Numbers New Hope

Possibilities for $s(x), e(x)$ in $p(x)=a(x) \cdot s(x)+e(x): \quad 1024^{12289}=3,76 \cdot 10^{36993}$ New Hopes parameters for computations:

- 1024 is the dimension of the ring in which the computations happen (upper bound for degree of a polynomial)
- 12289 is the modulus (coefficients of the polynomial are from the set $\{0, \ldots, 12288\}$)

In modular Computations a number/polynomial can be the product of Iarger numbers/polynomials.

Example: $5 \cdot 6=30 \equiv 2 \bmod 7$

Appendix
 Numbers RSA

Possibilities for $p_{1,} p_{2}$ in a 4096-bit public RSA key $n=p_{1} \cdot p_{2}$:

Bytes	Hexadezimal	Formel dezimal	
1	FF	$2^{8}-1$	
2	FFFF	$2^{2 \cdot 8}-1$	
	512	$512 \times$ FF	$2^{512 \cdot 8}-1$

If we find p_{1}, p_{2} is found too. 0 and 1 are no primes. If $p_{1}=2$ then n is even, what we would see immediately. All other even numbers and all numbers ending with 5 are no primes, such that there remain

$$
\left(2^{512 \cdot 8}-2\right) / 2-\left(2^{512 \cdot 8} / 5\right)=\left(2^{512 \cdot 8-1}-1\right)-\left(2^{512 \cdot 8} / 5\right)=3,13 \cdot 10^{1232}
$$

numbers to test.

Appendix
 Sophisticated RSA-Hacks

The primes $p_{1,} p_{2}$ can be testet prime number lists.
The currently largest known prime is $2^{74^{\prime} 207^{\prime 2} 2810}-1$.
If the prime factors are close to \sqrt{n}, they can be found with probalistic methods within seconds.

