COMPUTATIONAL TOOLS FOR MODELS OF CURVES: NORMALIZATION

Our Project: Algorithmic methods for arithmetic surfaces and regular, minimal models.

2-dimensional, irreducible, reduced schemes $\pi: X \Longrightarrow S$ are arithmetic surfaces if S is a Dedekindscheme and π is projective and flat. They are models of algebraic curves over number fields.

One of our main topics is Lipmans desingularization algorithm:
Let X be an excellent, Noetherian, reduced and $2-$ dimensional scheme. Then the following sequence

$$
\cdots X_{i+1} \rightarrow X_{i}^{\prime} \rightarrow X_{i} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0}=X
$$

with normalizations $X_{i}^{\prime} \rightarrow X_{i}$ and blow-ups $X_{i+1} \rightarrow X_{i}^{\prime}$ along $\operatorname{Sing}\left(X_{i}^{\prime}\right)$ is finite and X has a strong desingularization.

Lipman also works for arithmetic surfaces because they are of finite type over S and hence Noetherian and excellent. The bottleneck of the algorithm are the normalizations. Let us look at three different normalization algorithms:

Let I be a radical ideal in a Noetherian ring R and $A=R / I$ (reduced Noetherian ring). We want to compute the normalization \bar{A} of A.

1. Grauert-Remmert-de Jong: Computation through an increasing chain of rings. The theoretical background comes from the inclusions

$$
A \subseteq \operatorname{Hom}_{A}(J, J) \cong \frac{1}{x}(x J, J) \subseteq \bar{A} \subseteq Q(A)
$$

where (J, x) is a so called test pair for A. That means $A=\bar{A} \Longleftrightarrow$ $A=\operatorname{Hom}_{A}(J, J)$. The computation of the radical J (test ideal) and the increasing number of variables in the computation of $\operatorname{Hom}_{A}(J, J)$ can become unpractical.
Implemented in Singular for reduced rings over the integers.
2. Greuel-Laplagne-Seelisch: Computation through an increasing chain of ideals. We compute ideals $U_{1}, \ldots, U_{N} \subset A$ and non-zerodivisors d_{1}, \ldots, d_{N} on A, such that

$$
A \subset \frac{1}{d_{1}} U_{1} \subset \cdots \subset \frac{1}{d_{N}} U_{N}=\bar{A} \subset Q(A)
$$

In general more effective than algorithm 1, the only computation in $\operatorname{Hom}_{A}(J, J)$ is the radical of the test ideal.
Works whenever Gröbner bases, radicals and ideal quotients can be computed in rings of the form $R\left[t_{1}, \cdots, t_{s}\right]$.
Also implemented in Singular for reduced rings over the integers.
3. Böhm-Decker-Pfister-Laplagne-Steenpass-Steidel: Parallelization by stratifying $\operatorname{Sing}(A)$. (Non-normal-locus $N(A) \subset \operatorname{Sing}(A)$.)
Used techniques: Normalization via localization and modular methods.
In general even faster than algorithm 2, next thing to look at for polynomial rings over the integers!

